Alteration in calcium handling at the subcellular level in mdx myotubes.

نویسندگان

  • V Robert
  • M L Massimino
  • V Tosello
  • R Marsault
  • M Cantini
  • V Sorrentino
  • T Pozzan
چکیده

In this study, we have tested the hypothesis that augmented [Ca(2+)] in subcellular regions or organelles, which are known to play a key role in cell survival, is the missing link between Ca(2+) homeostasis alterations and muscular degeneration associated with muscular dystrophy. To this end, different targeted chimeras of the Ca(2+)-sensitive photoprotein aequorin have been transiently expressed in subcellular compartments of skeletal myotubes of mdx mice, the animal model of Duchenne muscular dystrophy. Direct measurements of the [Ca(2+)] in the sarcoplasmic reticulum, [Ca(2+)](sr), show a higher steady state level at rest and a larger drop after KCl-induced depolarization in mdx compared with control myotubes. The peaks in [Ca(2+)] occurring in the mitochondrial matrix of mdx myotubes are significantly larger than in controls upon KCl-induced depolarization or caffeine application. The augmented response of mitochondria precedes the alterations in the Ca(2+) responses of the cytosol and of the cytoplasmic region beneath the membrane, which become significant only at a later stage of myotube differentiation. Taking into account the key role played by mitochondria Ca(2+) handling in the control of cell death, our data suggest that mitochondria are potential targets of impaired Ca(2+) homeostasis in muscular dystrophy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement of sub-membrane [Ca2+] in adult myofibers and cytosolic [Ca2+] in myotubes from normal and mdx mice using the Ca2+ indicator FFP-18.

The hypothesis that intracellular Ca(2+) is elevated in dystrophic (mdx) skeletal muscle due to increased Ca(2+) influx is controversial. As the sub-sarcolemmal Ca(2+) ([Ca(2+)](mem)) should be even higher than the global cytosolic Ca(2+) in the presence of increased Ca(2+) influx, we investigated [Ca(2+)](mem) levels in collagenase-isolated adult flexor digitorum brevis (FDB) myofibres and myo...

متن کامل

Increased calcium influx in dystrophic muscle

We examined pathways which might result in the elevated resting free calcium [( Ca2+]i) levels observed in dystrophic mouse (mdx) skeletal muscle fibers and myotubes and human Duchenne muscular dystrophy myotubes. We found that mdx fibers, loaded with the calcium indicator fura-2, were less able to regulate [Ca2+]i levels in the region near the sarcolemma. Increased calcium influx or decreased ...

متن کامل

Heterokaryon myotubes with normal mouse and Duchenne nuclei exhibit sarcolemmal dystrophin staining and efficient intracellular free calcium control.

Duchenne and mdx muscle tissues lack dystrophin where it normally interacts with glycoproteins in the sarcolemma. Intracellular free calcium ([Ca2+]i) is elevated in Duchenne and mdx myotubes and is correlated with abnormally active calcium-specific leak channels in dystrophic myotubes. We fused Duchenne human and normal mouse myoblasts and identified heterokaryon myotubes by Hoechst 33342 stai...

متن کامل

CALL FOR PAPERS Mitochondria in Cardiovascular Physiology and Disease L-type Ca channel contributes to alterations in mitochondrial calcium handling in the mdx ventricular myocyte

Viola HM, Davies SM, Filipovska A, Hool LC. The L-type Ca channel contributes to alterations in mitochondrial calcium handling in the mdx ventricular myocyte. Am J Physiol Heart Circ Physiol 304: H767–H775, 2013. First published January 18, 2013; doi:10.1152/ajpheart.00700.2012.—The L-type Ca channel is the main route for calcium entry into cardiac myocytes, and it is essential for contraction....

متن کامل

Alteration of Sarcoplasmic Reticulum Ca2+ Release in Skeletal Muscle from Calpain 3-Deficient Mice

Mutations of Ca(2+)-activated proteases (calpains) cause muscular dystrophies. Nevertheless, the specific role of calpains in Ca(2+) signalling during the onset of dystrophies remains unclear. We investigated Ca(2+) handling in skeletal cells from calpain 3-deficient mice. [Ca(2+)](i) responses to caffeine, a ryanodine receptor (RyR) agonist, were decreased in -/- myotubes and absent in -/- myo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 7  شماره 

صفحات  -

تاریخ انتشار 2001